Ferroelectric RAM - Description

Description

Conventional DRAM consists of a grid of small capacitors and their associated wiring and signaling transistors. Each storage element, a cell, consists of one capacitor and one transistor, a so-called "1T-1C" device. DRAM cells scale directly with the size of the semiconductor fabrication process being used to make it. For instance, on the 90 nm process used by most memory providers to make DDR2 DRAM, the cell size is 0.22 μm², which includes the capacitor, transistor, wiring, and some amount of "blank space" between the various parts — it appears 35% utilization is typical, leaving 65% of the space wasted.

Data in a DRAM is stored as the presence or lack of an electrical charge in the capacitor, with the lack of charge in general representing "0". Writing is accomplished by activating the associated control transistor, draining the cell to write a "0", or sending current into it from a supply line if the new value should be "1". Reading is similar in nature; the transistor is again activated, draining the charge to a sense amplifier. If a pulse of charge is noticed in the amplifier, the cell held a charge and thus reads "1"; the lack of such a pulse indicates a "0". Note that this process is destructive, once the cell has been read. If it did hold a "1," it must be re-charged to that value again. Since a cell loses its charge after some time due to leak currents, it must be actively refreshed at intervals.

The 1T-1C storage cell design in an FeRAM is similar in construction to the storage cell in widely used DRAM in that both cell types include one capacitor and one access transistor. In a DRAM cell capacitor, a linear dielectric is used, whereas in an FeRAM cell capacitor the dielectric structure includes ferroelectric material, typically lead zirconate titanate (PZT).

A ferroelectric material has a nonlinear relationship between the applied electric field and the apparent stored charge. Specifically, the ferroelectric characteristic has the form of a hysteresis loop, which is very similar in shape to the hysteresis loop of ferromagnetic materials. The dielectric constant of a ferroelectric is typically much higher than that of a linear dielectric because of the effects of semi-permanent electric dipoles formed in the crystal structure of the ferroelectric material. When an external electric field is applied across a dielectric, the dipoles tend to align themselves with the field direction, produced by small shifts in the positions of atoms and shifts in the distributions of electronic charge in the crystal structure. After the charge is removed, the dipoles retain their polarization state. Binary "0"s and "1"s are stored as one of two possible electric polarizations in each data storage cell. For example, in the figure a "1" is encoded using the negative remnant polarization "-Pr", and a "0" is encoded using the positive remnant polarization "+Pr".

In terms of operation, FeRAM is similar to DRAM. Writing is accomplished by applying a field across the ferroelectric layer by charging the plates on either side of it, forcing the atoms inside into the "up" or "down" orientation (depending on the polarity of the charge), thereby storing a "1" or "0". Reading, however, is somewhat different than in DRAM. The transistor forces the cell into a particular state, say "0". If the cell already held a "0", nothing will happen in the output lines. If the cell held a "1", the re-orientation of the atoms in the film will cause a brief pulse of current in the output as they push electrons out of the metal on the "down" side. The presence of this pulse means the cell held a "1". Since this process overwrites the cell, reading FeRAM is a destructive process, and requires the cell to be re-written if it was changed.

In general, the operation of FeRAM is similar to ferrite core memory, one of the primary forms of computer memory in the 1960s. In comparison, FeRAM requires far less power to flip the state of the polarity, and does so much faster.

Read more about this topic:  Ferroelectric RAM

Famous quotes containing the word description:

    He hath achieved a maid
    That paragons description and wild fame;
    One that excels the quirks of blazoning pens.
    William Shakespeare (1564–1616)

    Once a child has demonstrated his capacity for independent functioning in any area, his lapses into dependent behavior, even though temporary, make the mother feel that she is being taken advantage of....What only yesterday was a description of the child’s stage in life has become an indictment, a judgment.
    Elaine Heffner (20th century)

    I fancy it must be the quantity of animal food eaten by the English which renders their character insusceptible of civilisation. I suspect it is in their kitchens and not in their churches that their reformation must be worked, and that Missionaries of that description from [France] would avail more than those who should endeavor to tame them by precepts of religion or philosophy.
    Thomas Jefferson (1743–1826)