History
Pierre de Fermat first stated the theorem in a letter dated October 18, 1640, to his friend and confidant Frénicle de Bessy as the following: p divides a p−1 − 1 whenever p is prime and a is coprime to p.
As usual, Fermat did not prove his assertion, only stating:
Et cette proposition est généralement vraie en toutes progressions et en tous nombres premiers; de quoi je vous envoierois la démonstration, si je n'appréhendois d'être trop long.
(And this proposition is generally true for all progressions and for all prime numbers; the proof of which I would send to you, if I were not afraid to be too long.)
Euler first published a proof in 1736 in a paper entitled "Theorematum Quorundam ad Numeros Primos Spectantium Demonstratio", but Leibniz left virtually the same proof in an unpublished manuscript from sometime before 1683.
The term "Fermat's Little Theorem" was first used in 1913 in Zahlentheorie by Kurt Hensel:
Für jede endliche Gruppe besteht nun ein Fundamentalsatz, welcher der kleine Fermatsche Satz genannt zu werden pflegt, weil ein ganz spezieller Teil desselben zuerst von Fermat bewiesen worden ist."
(There is a fundamental theorem holding in every finite group, usually called Fermat's little Theorem because Fermat was the first to have proved a very special part of it.)
It was first used in English in an article by Irving Kaplansky, "Lucas's Tests for Mersenne Numbers," American Mathematical Monthly, 52 (Apr., 1945).
Read more about this topic: Fermat's Little Theorem
Famous quotes containing the word history:
“Every library should try to be complete on something, if it were only the history of pinheads.”
—Oliver Wendell Holmes, Sr. (18091894)
“As I am, so shall I associate, and so shall I act; Caesars history will paint out Caesar.”
—Ralph Waldo Emerson (18031882)
“So in accepting the leading of the sentiments, it is not what we believe concerning the immortality of the soul, or the like, but the universal impulse to believe, that is the material circumstance, and is the principal fact in this history of the globe.”
—Ralph Waldo Emerson (18031882)