Converse
The converse of Fermat's little theorem is not generally true, as it fails for Carmichael numbers. However, a slightly stronger form of the theorem is true, and is known as Lehmer's theorem. The theorem is as follows:
If there exists an a such that
and for all prime q dividing p − 1
then p is prime.
This theorem forms the basis for the Lucas–Lehmer test, an important primality test.
Read more about this topic: Fermat's Little Theorem
Famous quotes containing the word converse:
“Were you to converse with a king, you ought to be as easy and unembarrassed as with your own valet-de chambre; but yet every look, word, and action should imply the utmost respect.... You must wait till you are spoken to; you must receive, not give, the subject of conversation, and you must even take care that the given subject of such conversation do not lead you into any impropriety.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Lately in converse with a New York alec
About the new school of the pseudo-phallic ...”
—Robert Frost (18741963)
“The eyes of men converse as much as their tongues, with the advantage that the ocular dialect needs no dictionary, but is understood all the world over.”
—Ralph Waldo Emerson (18031882)