Mordell Conjecture
In the 1920s, Louis Mordell posed a conjecture that implied that Fermat's equation has at most a finite number of nontrivial primitive integer solutions if the exponent n is greater than two. This conjecture was proven in 1983 by Gerd Faltings, and is now known as Faltings' theorem.
Read more about this topic: Fermat's Last Theorem
Famous quotes containing the word conjecture:
“What these perplexities of my uncle Toby were,tis impossible for you to guess;Mif you could,I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,I would tear it out of my book.”
—Laurence Sterne (17131768)