Definition
Fermat's little theorem states that if p is prime and a is coprime to p, then ap−1 − 1 is divisible by p. If a composite integer x is coprime to an integer a > 1 and x divides ax−1 − 1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes Fermat primality test for the base a.
The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2340 ≡ 1 (mod 341) and thus passes Fermat primality test for the base 2.
Pseudoprimes to base 2 are sometimes called Poulet numbers, Sarrus numbers, or Fermatians (sequence A001567 in OEIS).
An integer x that is a Fermat pseudoprime for all values of a that are coprime to x is called a Carmichael number.
Read more about this topic: Fermat Pseudoprime
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)