Fermat Polygonal Number Theorem

In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive number can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. Three such representations of the number 17, for example, are shown below:

17 = 10 + 6 + 1 (triangular numbers)
17 = 16 + 1 (square numbers)
17 = 12 + 5 (pentagonal numbers).

The theorem is named after Pierre de Fermat, who stated it without proof, promising to write it in a separate work that never appeared. Joseph Louis Lagrange proved the square case in 1770, which states that every positive number can be represented as a sum of four squares, for example, 7 = 4 + 1 + 1 + 1.. Gauss proved the triangular case in 1796, commemorating the occasion by writing in his diary the line "ΕΥΡΗΚΑ! num = Δ + Δ + Δ", and published a proof in his book Disquisitiones Arithmeticae. For this reason, Gauss' result is sometimes known as the Eureka theorem. The full polygonal number theorem was not resolved until it was finally proven by Cauchy in 1813. The proof of Nathanson (1987) is based on the following lemma due to Cauchy:

For odd positive integers a and b such that b2 < 4a and 3a < b2 + 2b + 4 we can find nonnegative integers s, t, u, and v such that a = s2 + t2 + u2 + v2 and b = s + t + u + v.

Famous quotes containing the words number and/or theorem:

    In many ways, life becomes simpler [for young adults]. . . . We are expected to solve only a finite number of problems within a limited range of possible solutions. . . . It’s a mental vacation compared with figuring out who we are, what we believe, what we’re going to do with our talents, how we’re going to solve the social problems of the globe . . .and what the perfect way to raise our children will be.
    Roger Gould (20th century)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)