Fermat Number - Basic Properties

Basic Properties

The Fermat numbers satisfy the following recurrence relations:


F_{n} = (F_{n-1}-1)^{2}+1\!

for n ≥ 1,


F_{n} = F_{n-1} + 2^{2^{n-1}}F_{0} \cdots F_{n-2}\!

F_{n} = F_{n-1}^2 - 2(F_{n-2}-1)^2\!

F_{n} = F_{0} \cdots F_{n-1} + 2\!

for n ≥ 2. Each of these relations can be proved by mathematical induction. From the last equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common factor. To see this, suppose that 0 ≤ i < j and Fi and Fj have a common factor a > 1. Then a divides both

and Fj; hence a divides their difference, 2. Since a > 1, this forces a = 2. This is a contradiction, because each Fermat number is clearly odd. As a corollary, we obtain another proof of the infinitude of the prime numbers: for each Fn, choose a prime factor pn; then the sequence {pn} is an infinite sequence of distinct primes.

Further properties:

  • The number of digits D(n,b) of Fn expressed in the base b is
(See floor function).
  • No Fermat number can be expressed as the sum of two primes, with the exception of F1 = 2 + 3.
  • No Fermat prime can be expressed as the difference of two pth powers, where p is an odd prime.
  • With the exception of F0 and F1, the last digit of a Fermat number is 7.
  • The sum of the reciprocals of all the Fermat numbers (sequence A051158 in OEIS) is irrational. (Solomon W. Golomb, 1963)

Read more about this topic:  Fermat Number

Famous quotes containing the words basic and/or properties:

    The basic rule of human nature is that powerful people speak slowly and subservient people quickly—because if they don’t speak fast nobody will listen to them.
    Michael Caine [Maurice Joseph Micklewhite] (b. 1933)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)