In mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (X:Y:Z) by the Fermat equation
Therefore in terms of the affine plane its equation is
An integer solution to the Fermat equation would correspond to a nonzero rational number solution to the affine equation, and vice versa. But by Fermat's last theorem it is now known that (for n ≥ 3) there are no nontrivial integer solutions to the Fermat equation; therefore, the Fermat curve has no nontrivial rational points.
The Fermat curve is non-singular and has genus
This means genus 0 for the case n = 2 (a conic) and genus 1 only for n = 3 (an elliptic curve). The Jacobian variety of the Fermat curve has been studied in depth. It is isogenous to a product of simple abelian varieties with complex multiplication.
Read more about Fermat Curve: Fermat Varieties, Related Studies
Famous quotes containing the word curve:
“In philosophical inquiry, the human spirit, imitating the movement of the stars, must follow a curve which brings it back to its point of departure. To conclude is to close a circle.”
—Charles Baudelaire (18211867)