In mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (X:Y:Z) by the Fermat equation
Therefore in terms of the affine plane its equation is
An integer solution to the Fermat equation would correspond to a nonzero rational number solution to the affine equation, and vice versa. But by Fermat's last theorem it is now known that (for n ≥ 3) there are no nontrivial integer solutions to the Fermat equation; therefore, the Fermat curve has no nontrivial rational points.
The Fermat curve is non-singular and has genus
This means genus 0 for the case n = 2 (a conic) and genus 1 only for n = 3 (an elliptic curve). The Jacobian variety of the Fermat curve has been studied in depth. It is isogenous to a product of simple abelian varieties with complex multiplication.
Read more about Fermat Curve: Fermat Varieties, Related Studies
Famous quotes containing the word curve:
“Nothing ever prepares a couple for having a baby, especially the first one. And even baby number two or three, the surprises and challenges, the cosmic curve balls, keep on coming. We cant believe how much children change everythingthe time we rise and the time we go to bed; the way we fight and the way we get along. Even when, and if, we make love.”
—Susan Lapinski (20th century)