Contributions To Number Theory
Frobenius introduced a canonical way of turning primes into conjugacy classes in Galois groups over Q. Specifically, if K/Q is a finite Galois extension then to each (positive) prime p which does not ramify in K and to each prime ideal P lying over p in K there is a unique element g of Gal(K/Q) satisfying the condition g(x) = xp (mod P) for all integers x of K. Varying P over p changes g into a conjugate (and every conjugate of g occurs in this way), so the conjugacy class of g in the Galois group is canonically associated to p. This is called the Frobenius conjugacy class of p and any element of the conjugacy class is called a Frobenius element of p. If we take for K the mth cyclotomic field, whose Galois group over Q is the units modulo m (and thus is abelian, so conjugacy classes become elements), then for p not dividing m the Frobenius class in the Galois group is p mod m. From this point of view, the distribution of Frobenius conjugacy classes in Galois groups over Q (or, more generally, Galois groups over any number field) generalizes Dirichlet's classical result about primes in arithmetic progressions. The study of Galois groups of infinite-degree extensions of Q depends crucially on this construction of Frobenius elements, which provides in a sense a dense subset of elements which are accessible to detailed study.
Read more about this topic: Ferdinand Georg Frobenius
Famous quotes containing the words contributions to, number and/or theory:
“The vast material displacements the machine has made in our physical environment are perhaps in the long run less important than its spiritual contributions to our culture.”
—Lewis Mumford (18951990)
“A great number of the disappointments and mishaps of the troubled world are the direct result of literature and the allied arts. It is our belief that no human being who devotes his life and energy to the manufacture of fantasies can be anything but fundamentally inadequate”
—Christopher Hampton (b. 1946)
“No one thinks anything silly is suitable when they are an adolescent. Such an enormous share of their own behavior is silly that they lose all proper perspective on silliness, like a baker who is nauseated by the sight of his own eclairs. This provides another good argument for the emerging theory that the best use of cryogenics is to freeze all human beings when they are between the ages of twelve and nineteen.”
—Anna Quindlen (20th century)