Low-cycle Fatigue
Where the stress is high enough for plastic deformation to occur, the account in terms of stress is less useful and the strain in the material offers a simpler description. Low-cycle fatigue is usually characterised by the Coffin-Manson relation (published independently by L. F. Coffin in 1954 and S. S. Manson 1953):
-where:
- Δεp /2 is the plastic strain amplitude;
- εf' is an empirical constant known as the fatigue ductility coefficient, the failure strain for a single reversal;
- 2N is the number of reversals to failure (N cycles);
- c is an empirical constant known as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7 for metals in time independent fatigue. Slopes can be considerably steeper in the presence of creep or environmental interactions.
A similar relationship for materials such as Zirconium, used in the nuclear industry.
Read more about this topic: Fatigue (material)
Famous quotes containing the word fatigue:
“I have just read your dispatch about sore tongued and fatiegued [sic] horses. Will you pardon me for asking what the horses of your army have done since the battle of Antietem that fatigue anything?”
—Abraham Lincoln (18091865)