Definition and Speed
An FFT computes the DFT and produces exactly the same result as evaluating the DFT definition directly; the only difference is that an FFT is much faster. (In the presence of round-off error, many FFT algorithms are also much more accurate than evaluating the DFT definition directly, as discussed below.)
Let x0, ...., xN-1 be complex numbers. The DFT is defined by the formula
Evaluating this definition directly requires O(N2) operations: there are N outputs Xk, and each output requires a sum of N terms. An FFT is any method to compute the same results in O(N log N) operations. More precisely, all known FFT algorithms require Θ(N log N) operations (technically, O only denotes an upper bound), although there is no known proof that a lower complexity score is impossible.
To illustrate the savings of an FFT, consider the count of complex multiplications and additions. Evaluating the DFT's sums directly involves N2 complex multiplications and N(N − 1) complex additions . The well-known radix-2 Cooley–Tukey algorithm, for N a power of 2, can compute the same result with only (N/2) log2 N complex multiplies (again, ignoring simplifications of multiplications by 1 and similar) and N log2N complex additions. In practice, actual performance on modern computers is usually dominated by factors other than the speed of arithmetic operations and the analysis is a complicated subject (see, e.g., Frigo & Johnson, 2005), but the overall improvement from O(N2) to O(N log N) remains.
Read more about this topic: Fast Fourier Transform
Famous quotes containing the words definition and/or speed:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Among the laws controlling human societies there is one more precise and clearer, it seems to me, than all the others. If men are to remain civilized or to become civilized, the art of association must develop and improve among them at the same speed as equality of conditions spreads.”
—Alexis de Tocqueville (18051859)