Faro Shuffle - Group Theory Aspects

Group Theory Aspects

In mathematics, a perfect shuffle can be considered to be an element of the symmetric group.

More generally, in, the perfect shuffle is the permutation that splits the set into 2 piles and interleaves them:

\begin{pmatrix} 1 & 2 & 3 & 4 & \cdots \\
1 & n+1 & 2 & n+2 & \cdots \end{pmatrix}

Formally, it sends

k \mapsto \begin{cases}
2k-1 & k\leq n\\
2(k-n) & k> n
\end{cases}

Analogously, the -perfect shuffle permutation is the element of that splits the set into k piles and interleaves them.

The -perfect shuffle, denote it, is the composition of the -perfect shuffle with an -cycle, so the sign of is:

The sign is thus 4-periodic:

\mbox{sgn}(\rho_n) = (-1)^{\lfloor n/2 \rfloor} = \begin{cases}
+1 & n \equiv 0,1 \pmod{4}\\
-1 & n \equiv 2,3 \pmod{4}
\end{cases}

The first few perfect shuffles are: and are trivial, and is the transposition .

Read more about this topic:  Faro Shuffle

Famous quotes containing the words group, theory and/or aspects:

    There is nothing in the world that I loathe more than group activity, that communal bath where the hairy and slippery mix in a multiplication of mediocrity.
    Vladimir Nabokov (1899–1977)

    ... liberal intellectuals ... tend to have a classical theory of politics, in which the state has a monopoly of power; hoping that those in positions of authority may prove to be enlightened men, wielding power justly, they are natural, if cautious, allies of the “establishment.”
    Susan Sontag (b. 1933)

    The power of a text is different when it is read from when it is copied out.... Only the copied text thus commands the soul of him who is occupied with it, whereas the mere reader never discovers the new aspects of his inner self that are opened by the text, that road cut through the interior jungle forever closing behind it: because the reader follows the movement of his mind in the free flight of day-dreaming, whereas the copier submits it to command.
    Walter Benjamin (1892–1940)