Generalizations
Because of the Mordell–Weil theorem, Faltings' theorem can be reformulated as a statement about the intersection of a curve C with a finitely generated subgroup Γ of an abelian variety A. Generalizing by replacing C by an arbitrary subvariety of A and Γ by an arbitrary finite-rank subgroup of A leads to the Mordell–Lang conjecture, which has been proved.
Another higher-dimensional generalization of Faltings' theorem is the Bombieri–Lang conjecture that if X is a pseudo-canonical variety (i.e., variety of general type) over a number field k, then X(k) is not Zariski dense in X. Even more general conjectures have been put forth by Paul Vojta.
The Mordell conjecture for function fields was proved by Manin (1963) and by Grauert (1965). Coleman (1990) found and fixed a gap in Manin's proof.
Read more about this topic: Faltings' Theorem