Fair Division

Fair division, also known as the cake-cutting problem, is the problem of dividing a resource in such a way that all recipients believe that they have received a fair amount. The problem is easier when recipients have different measures of value of the parts of the resource: in the "cake cutting" version, one recipient may like marzipan, another prefers cherries, and so on—then, and only then, the n recipients may get even more than what would be one n-th of the value of the "cake" for each of them. On the other hand, the presence of different measures opens a vast potential for many challenging questions and directions of further research.

There are a number of variants of the problem. The definition of 'fair' may simply mean that they get at least their fair proportion, or harder requirements like envy-freeness may also need to be satisfied. The theoretical algorithms mainly deal with goods that can be divided without losing value. The division of indivisible goods, as in for instance a divorce, is a major practical problem. Chore division is a variant where the goods are undesirable.

Fair division is often used to refer to just the simplest variant. That version is referred to here as proportional division or simple fair division.

Most of what is normally called a fair division is not considered so by the theory because of the use of arbitration. This kind of situation happens quite often with mathematical theories named after real life problems. The decisions in the Talmud on entitlement when an estate is bankrupt reflect some quite complex ideas about fairness, and most people would consider them fair. However they are the result of legal debates by rabbis rather than divisions according to the valuations of the claimants.

Read more about Fair Division:  Assumptions, Criteria For A Fair Division, Two Players, Many Players, Variants, History, In Popular Culture

Famous quotes containing the words fair and/or division:

    The hand that hath made you fair hath made you good.
    William Shakespeare (1564–1616)

    For a small child there is no division between playing and learning; between the things he or she does “just for fun” and things that are “educational.” The child learns while living and any part of living that is enjoyable is also play.
    Penelope Leach (20th century)