Failure Rate - Failure Rate in The Continuous Sense

Failure Rate in The Continuous Sense

Calculating the failure rate for ever smaller intervals of time, results in the hazard function (loosely and incorrectly called hazard rate), . This becomes the instantaneous failure rate as tends to zero:

A continuous failure rate depends on the existence of a failure distribution, which is a cumulative distribution function that describes the probability of failure (at least) up to and including time t,

where is the failure time. The failure distribution function is the integral of the failure density function, f(t),

The hazard function can be defined now as

Many probability distributions can be used to model the failure distribution (see List of important probability distributions). A common model is the exponential failure distribution,

which is based on the exponential density function. The hazard rate function for this is:

Thus, for an exponential failure distribution, the hazard rate is a constant with respect to time (that is, the distribution is "memory-less"). For other distributions, such as a Weibull distribution or a log-normal distribution, the hazard function may not be constant with respect to time. For some such as the deterministic distribution it is monotonic increasing (analogous to "wearing out"), for others such as the Pareto distribution it is monotonic decreasing (analogous to "burning in"), while for many it is not monotonic.

Read more about this topic:  Failure Rate

Famous quotes containing the words failure, rate, continuous and/or sense:

    Learning starts with failure; the first failure is the beginning of education.
    John Hersey (1914–1993)

    Writing a book I have found to be like building a house. A man forms a plan, and collects materials. He thinks he has enough to raise a large and stately edifice; but after he has arranged, compacted and polished, his work turns out to be a very small performance. The authour however like the builder, knows how much labour his work has cost him; and therefore estimates it at a higher rate than other people think it deserves,
    James Boswell (1740–1795)

    The problem, thus, is not whether or not women are to combine marriage and motherhood with work or career but how they are to do so—concomitantly in a two-role continuous pattern or sequentially in a pattern involving job or career discontinuities.
    Jessie Bernard (20th century)

    Leaving home in a sense involves a kind of second birth in which we give birth to ourselves.
    Robert Neelly Bellah (20th century)