Factor Analysis - Exploratory Factor Analysis Versus Principal Components Analysis

Exploratory Factor Analysis Versus Principal Components Analysis

See also: Principal component analysis and Exploratory factor analysis

While exploratory factor analysis and principal component analysis are treated as synonymous techniques in some fields of statistics, this has been criticised (e.g. Fabrigar et al., 1999; Suhr, 2009). In factor analysis, the researcher makes the assumption that an underlying causal model exists, whereas PCA is simply a variable reduction technique. Researchers have argued that the distinctions between the two techniques may mean that there are objective benefits for preferring one over the other based on the analytic goal.

Read more about this topic:  Factor Analysis

Famous quotes containing the words factor, analysis, principal and/or components:

    It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be.... This, in turn, means that our statesmen, our businessmen, our everyman must take on a science fictional way of thinking.
    Isaac Asimov (1920–1992)

    The spider-mind acquires a faculty of memory, and, with it, a singular skill of analysis and synthesis, taking apart and putting together in different relations the meshes of its trap. Man had in the beginning no power of analysis or synthesis approaching that of the spider, or even of the honey-bee; but he had acute sensibility to the higher forces.
    Henry Brooks Adams (1838–1918)

    There are three principal means of acquiring knowledge available to us: observation of nature, reflection, and experimentation. Observation collects facts; reflection combines them; experimentation verifies the result of that combination. Our observation of nature must be diligent, our reflection profound, and our experiments exact. We rarely see these three means combined; and for this reason, creative geniuses are not common.
    Denis Diderot (1713–1784)

    Hence, a generative grammar must be a system of rules that can iterate to generate an indefinitely large number of structures. This system of rules can be analyzed into the three major components of a generative grammar: the syntactic, phonological, and semantic components.
    Noam Chomsky (b. 1928)