Formal Definition
In convex geometry, a face of a polytope P is the intersection of any supporting hyperplane of P and P. From this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. For example, a polyhedron R3 is entirely on one hyperplane of R4. If R4 were spacetime, the hyperplane at t = 0 supports and contains the entire polyhedron. Thus, by the formal definition, the polyhedron is a face of itself.
All of the following are the n-faces of a 4-dimensional polytope:
- 4-face – the 4-dimensional 4-polytope itself
- 3-face – any 3-dimensional cell
- 2-face – any 2-dimensional polygonal face (using the common definition of face)
- 1-face – any 1-dimensional edge
- 0-face – any 0-dimensional vertex
- the empty set.
Read more about this topic: Face (geometry)
Famous quotes containing the words formal and/or definition:
“I will not let him stir
Till I have used the approvèd means I have,
With wholesome syrups, drugs, and holy prayers,
To make of him a formal man again.”
—William Shakespeare (15641616)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)