Extreme Value Theorem - Functions To Which Theorem Does Not Apply

Functions To Which Theorem Does Not Apply

The following examples show why the function domain must be closed and bounded in order for the theorem to apply. Each fails to attain a maximum on the given interval.

  1. ƒ(x) = x defined over [0, ∞) is not bounded from above.
  2. ƒ(x) = x / (1 + x) defined over [0, ∞) is bounded but does not attain its least upper bound 1.
  3. ƒ(x) = 1 / x defined over (0, 1] is not bounded from above.
  4. ƒ(x) = 1 – x defined over (0, 1] is bounded but never attains its least upper bound 1.

Defining ƒ(0) = 0 in the last two examples shows that both theorems require continuity on .

Read more about this topic:  Extreme Value Theorem

Famous quotes containing the words functions, theorem and/or apply:

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    I would wish that the women of our country could embrace ... [the responsibilities] of citizenship as peculiarly their own. If they could apply their higher sense of service and responsibility, their freshness of enthusiasm, their capacity for organization to this problem, it would become, as it should become, an issue of profound patriotism. The whole plane of political life would be lifted.
    Herbert Hoover (1874–1964)