Extension To Semi-continuous Functions
If the continuity of the function f is weakened to semi-continuity, then the corresponding half of the boundedness theorem and the extreme value theorem hold and the values –∞ or +∞, respectively, from the extended real number line can be allowed as possible values. More precisely:
Theorem: If a function f : → [–∞,∞) is upper semi-continuous, meaning that
for all x in, then f is bounded above and attains its supremum.
Proof: If f(x) = –∞ for all x in, then the supremum is also –∞ and the theorem is true. In all other cases, the proof is a slight modification of the proofs given below. In the proof of the boundedness theorem, the upper semi-continuity of f at x only implies that the limit superior of the subsequence {f(xnk)} is bounded above by f(x) < ∞, but that is enough to obtain the contradiction. In the proof of the extreme value theorem, upper semi-continuity of f at d implies that the limit superior of the subsequence {f(dnk)} is bounded above by f(d), but this suffices to conclude that f(d) = M. ∎
Applying this result to −f proves:
Theorem: If a function f : → (–∞,∞] is lower semi-continuous, meaning that
for all x in, then f is bounded below and attains its infimum.
A real-valued function is upper as well as lower semi-continuous, if and only if it is continuous in the usual sense. Hence these two theorems imply the boundedness theorem and the extreme value theorem.
Read more about this topic: Extreme Value Theorem
Famous quotes containing the words extension and/or functions:
“A dense undergrowth of extension cords sustains my upper world of lights, music, and machines of comfort.”
—Mason Cooley (b. 1927)
“One of the most highly valued functions of used parents these days is to be the villains of their childrens lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.”
—Frank Pittman (20th century)