Technology
EIT is the first long-duration instrument to use normal incidence multilayer coated optics to image the Sun in extreme ultraviolet. This portion of the spectrum is extremely difficult to reflect, as most matter absorbs the light very strongly. Conventionally these wavelengths have been reflected either using grazing incidence (as in a Wolter telescope for imaging X-rays) or a diffraction grating (as in the jocularly-termed overlappograph flown on Skylab in the mid 1970s). Modern vacuum deposition technology allows mirrors to be coated with extremely thin layers of nearly any material. The multilayer mirrors in an EUV telescope are coated with alternate layers of a light "spacer" element (such as silicon) that absorbs EUV light only weakly, and a heavy "scatterer" element (such as molybdenum) that absorbs EUV light very strongly. Perhaps 100 layers of each type might be placed on the mirror, with a thickness of around 10 nm each. The layer thickness is tightly controlled, so that at the desired wavelength, reflected photons from each layer interfere constructively. In this way, reflectivities of up to ~50% can be attained.
The multilayer technology allows conventional telescope forms (such as the Cassegrain or Ritchey-Chretien designs) to be used in a novel part of the spectrum. Solar imaging with multilayer EUV optics was pioneered in the 1990s by the MSSTA and NIXT sounding rockets, each of which flew on several five-minute missions into space. Multilayer EUV optics are also used in terrestrial nanolithography rigs for fabrication of microchips.
The EIT detector is a conventional CCDs that are back-illuminated and specially thinned to admit the EUV photons. Because the detector is about equally sensitive to EUV and visible photons, and the Sun is about one billion (109) times brighter in visible light than in EUV, special thin foil filters are used to block the visible light while admitting the EUV. The filters are made of extremely thin aluminum foil, about 200 nm (0.2 micrometre) thick, and transmit about half of the incident EUV light while absorbing essentially all of the incident visible light.
Read more about this topic: Extreme Ultraviolet Imaging Telescope
Famous quotes containing the word technology:
“If we had a reliable way to label our toys good and bad, it would be easy to regulate technology wisely. But we can rarely see far enough ahead to know which road leads to damnation. Whoever concerns himself with big technology, either to push it forward or to stop it, is gambling in human lives.”
—Freeman Dyson (b. 1923)
“Technology is not an image of the world but a way of operating on reality. The nihilism of technology lies not only in the fact that it is the most perfect expression of the will to power ... but also in the fact that it lacks meaning.”
—Octavio Paz (b. 1914)