k-extreme Points
More generally, a point in a convex set S is k-extreme if it lies in the interior of a k-dimensional convex set within S, but not a k+1-dimensional convex set within S. Thus, an extreme point is also a 0-extreme point. If S is a polytope, then the k-extreme points are exactly the interior points of the k-dimensional faces of S. More generally, for any convex set S, the k-extreme points are partitioned into k-dimensional open faces.
The finite-dimensional Krein-Milman theorem, which is due to Minkowski, can be quickly proved using the concept of k-extreme points. If S is closed, bounded, and n-dimensional, and if p is a point in S, then p is k-extreme for some k < n. The theorem asserts that p is a convex combination of extreme points. If k = 0, then it's trivially true. Otherwise p lies on a line segment in S which can be maximally extended (because S is closed and bounded). If the endpoints of the segment are q and r, then their extreme rank must be less than that of p, and the theorem follows by induction.
Read more about this topic: Extreme Point
Famous quotes containing the word points:
“He is the best sailor who can steer within the fewest points of the wind, and extract a motive power out of the greatest obstacles. Most begin to veer and tack as soon as the wind changes from aft, and as within the tropics it does not blow from all points of the compass, there are some harbors which they can never reach.”
—Henry David Thoreau (18171862)