Extremal Length - Elementary Properties of Extremal Length

Elementary Properties of Extremal Length

The extremal length satisfies a few simple monotonicity properties. First, it is clear that if, then . Moreover, the same conclusion holds if every curve contains a curve as a subcurve (that is, is the restriction of to a subinterval of its domain). Another sometimes useful inequality is

This is clear if or if, in which case the right hand side is interpreted as . So suppose that this is not the case and with no loss of generality assume that the curves in are all rectifiable. Let satisfy for . Set . Then and, which proves the inequality.

Read more about this topic:  Extremal Length

Famous quotes containing the words elementary, properties and/or length:

    As if paralyzed by the national fear of ideas, the democratic distrust of whatever strikes beneath the prevailing platitudes, it evades all resolute and honest dealing with what, after all, must be every healthy literature’s elementary materials.
    —H.L. (Henry Lewis)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    Men sometimes speak as if the study of the classics would at length make way for more modern and practical studies; but the adventurous student will always study classics, in whatever language they may be written and however ancient they may be. For what are the classics but the noblest recorded thoughts of man?... We might as well omit to study Nature because she is old.
    Henry David Thoreau (1817–1862)