Extremal Length - Definition of Extremal Length

Definition of Extremal Length

To define extremal length, we need to first introduce several related quantities. Let be an open set in the complex plane. Suppose that is a collection of rectifiable curves in . If is Borel-measurable, then for any rectifiable curve we let

denote the -length of , where denotes the Euclidean element of length. (It is possible that .) What does this really mean? If is parameterized in some interval, then is the integral of the Borel-measurable function with respect to the Borel measure on for which the measure of every subinterval is the length of the restriction of to . In other words, it is the Lebesgue-Stieltjes integral, where is the length of the restriction of to . Also set

The area of is defined as

and the extremal length of is

where the supremum is over all Borel-measureable with . If contains some non-rectifiable curves and denotes the set of rectifiable curves in, then is defined to be .

The term modulus of refers to .

The extremal distance in between two sets in is the extremal length of the collection of curves in with one endpoint in one set and the other endpoint in the other set.

Read more about this topic:  Extremal Length

Famous quotes containing the words definition of, definition and/or length:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    To find the length of an object, we have to perform certain
    physical operations. The concept of length is therefore fixed when the operations by which length is measured are fixed: that is, the concept of length involves as much as and nothing more than the set of operations by which length is determined.
    Percy W. Bridgman (1882–1961)