Definition
The official definition of "planet" used by the International Astronomical Union (IAU) only covers the Solar System and thus does not apply to exoplanets. As of April 2011, the only definitional statement issued by the IAU that pertains to exoplanets is a working definition issued in 2001 and modified in 2003. That definition contains the following criteria:
- Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 Jupiter masses for objects of solar metallicity) that orbit stars or stellar remnants are "planets" (no matter how they formed). The minimum mass/size required for an extrasolar object to be considered a planet should be the same as that used in our solar system.
- Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are "brown dwarfs", no matter how they formed or where they are located.
- Free-floating objects in young star clusters with masses below the limiting mass for thermonuclear fusion of deuterium are not "planets", but are "sub-brown dwarfs" (or whatever name is most appropriate).
This article follows the above working definition. Therefore it only discusses planets that orbit stars or brown dwarfs. (There have also been several reported detections of planetary-mass objects that do not orbit any parent body. Some of these may have once belonged to a star's planetary system before being ejected from it; the term "rogue planet" is sometimes applied to such objects.)
However, the IAU's working definition is not universally accepted. One alternate suggestion is that planets should be distinguished from brown dwarfs on the basis of formation. It is widely believed that giant planets form through core accretion, and that process may sometimes produce planets with masses above the deuterium fusion threshold; massive planets of that sort may have already been observed. This viewpoint also admits the possibility of sub-brown dwarfs, which have planetary masses but form like stars from the direct collapse of clouds of gas.
Also, the 13 Jupiter-mass cutoff does not have precise physical significance. Deuterium fusion can occur in some objects with mass below that cutoff. The amount of deuterium fused depends to some extent on the composition of the object. The Extrasolar Planets Encyclopaedia includes objects up to 25 Jupiter masses, saying, "The fact that there is no special feature around 13 MJup in the observed mass spectrum reinforces the choice to forget this mass limit," and the Exoplanet Data Explorer includes objects up to 24 Jupiter masses with the advisory: "The 13 Jupiter-mass distinction by the IAU Working Group is physically unmotivated for planets with rocky cores, and observationally problematic due to the sin i ambiguity."
Read more about this topic: Extrasolar Planet
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)