External Ballistics - Maximum Effective Small Arms Range

Maximum Effective Small Arms Range

The maximum practical range of all small arms and especially high-powered sniper rifles depends mainly on the aerodynamic or ballistic efficiency of the spin stabilised projectiles used. Long-range shooters must also collect relevant information to calculate elevation and windage corrections to be able to achieve first shot strikes at point targets. The data to calculate these fire control corrections has a long list of variables including:

  • ballistic coefficient of the bullets used
  • height of the sighting components above the rifle bore axis
  • the zero range at which the sighting components and rifle combination were sighted in
  • bullet weight
  • actual muzzle velocity (powder temperature affects muzzle velocity, primer ignition is also temperature dependent)
  • range to target
  • supersonic range of the employed gun, cartridge and bullet combination
  • inclination angle in case of uphill/downhill firing
  • target speed and direction
  • wind speed and direction (main cause for horizontal projectile deflection and generally the hardest ballistic variable to measure and judge correctly. Wind effects can also cause vertical deflection.)
  • air temperature, pressure, altitude and humidity variations (these make up the ambient air density)
  • Earth's gravity (changes slightly with latitude and altitude)
  • gyroscopic drift (horizontal and vertical plane gyroscopic effect — often known as spin drift - induced by the barrels twist direction and twist rate)
  • Coriolis effect drift (latitude, direction of fire and northern or southern hemisphere data dictate this effect)
  • Eötvös effect (interrelated with the Coriolis effect, latitude and direction of fire dictate this effect)
  • lateral throw-off (dispersion that is caused by mass imbalance in the applied projectile)
  • aerodynamic jump (dispersion that is caused by lateral (wind) impulses activated during free flight at or very near the muzzle)
  • the inherent potential accuracy and adjustment range of the sighting components
  • the inherent potential accuracy of the rifle
  • the inherent potential accuracy of the ammunition
  • the inherent potential accuracy of the computer program and other firing control components used to calculate the trajectory

The ambient air density is at its maximum at Arctic sea level conditions. Cold gunpowder also produces lower pressures and hence lower muzzle velocities than warm powder. This means that the maximum practical range of rifles will be at it shortest at Arctic sea level conditions.

The ability to hit a point target at great range has a lot to do with the ability to tackle environmental and meteorological factors and a good understanding of exterior ballistics and the limitations of equipment. Without (computer) support and highly accurate laser rangefinders and meteorological measuring equipment as aids to determine ballistic solutions, long-range shooting beyond 1000 m (1100 yd) at unknown ranges becomes guesswork for even the most expert long-range marksmen.

Interesting further reading: Marksmanship Wikibook

Read more about this topic:  External Ballistics

Famous quotes containing the words maximum, effective, small, arms and/or range:

    I had a quick grasp of the secret to sanity—it had become the ability to hold the maximum of impossible combinations in one’s mind.
    Norman Mailer (b. 1923)

    I know no method to secure the repeal of bad or obnoxious laws so effective as their stringent execution.
    Ulysses S. Grant (1822–1885)

    Nothing can we call our own but death,
    And that small model of the barren earth
    Which serves as paste and cover to our bones.
    William Shakespeare (1564–1616)

    A well-regulated militia being necessary to the security of a free State, the right of the people to keep and bear arms shall not be infringed.
    U.S. Constitution, Second Amendment.

    Whereas children can learn from their interactions with their parents how to get along in one sort of social hierarchy—that of the family—it is from their interactions with peers that they can best learn how to survive among equals in a wide range of social situations.
    Zick Rubin (20th century)