Exponentiation By Squaring - 2k-ary Method

2k-ary Method

This algorithm calculates the value of xn after expanding the exponent in base 2k. It was first proposed by Brauer in 1939. In the algorithm below we make use of the following function f(0) = (k,0) and f(m) = (s,u) where m = u·2s with u odd.

Algorithm:

Input
An element x of G, a parameter k > 0, a non-negative integer n = (nl−1, nl−2, ..., n0)2k and the precomputed values x3, x5, ..., .
Output
The element xn in G
1. y := 1 and i := l-1 2. While i>=0 do 3. (s,u) := f(ni) 4. for j:=1 to k-s do 5. y := y2 6. y := y*xu 7. for j:=1 to s do 8. y := y2 9. i := i-1 10. return y

For optimal efficiency, k should be the smallest integer satisfying

Read more about this topic:  Exponentiation By Squaring

Famous quotes containing the word method:

    The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.
    Isaiah Berlin (b. 1909)