Exponential Map - Relationships

Relationships

In the case of Lie groups with a bi-invariant metric—a pseudo-Riemannian metric invariant under both left and right translation—the exponential maps of the pseudo-Riemannian structure are the same as the exponential maps of the Lie group. In general Lie groups do not have a bi-invariant metric, though all connected semisimple (or reductive) Lie groups do. The existence of a bi-invariant Riemannian metric is stronger than that of a pseudo-Riemannian metric, and implies that the Lie algebra is the Lie algebra of a compact Lie group; conversely, any compact (or abelian) Lie group has such a Riemannian metric.

Take the example that gives the "honest" exponential map. Consider the positive real numbers R+, a Lie group under the usual multiplication. Then each tangent space is just R. On each copy of R at the point y, we introduce the modified inner product

(multiplying them as usual real numbers but scaling by y2). (This is what makes the metric left-invariant, for left multiplication by a factor will just pull out of the inner product, twice — canceling the square in the denominator).

Consider the point 1 ∈ R+, and xR an element of the tangent space at 1. The usual straight line emanating from 1, namely y(t) = 1 + xt covers the same path as a geodesic, of course, except we have to reparametrize so as to get a curve with constant speed ("constant speed", remember, is not going to be the ordinary constant speed, because we're using this funny metric). To do this we reparametrize by arc length (the integral of the length of the tangent vector in the norm induced by the modified metric):

and after inverting the function to obtain t as a function of s, we substitute and get

Now using the unit speed definition, we have

,

giving the expected ex.

The Riemannian distance defined by this is simply

,

a metric which should be familiar to anyone who has drawn graphs on log paper.

Read more about this topic:  Exponential Map