Exponential Family - Examples

Examples

It is critical, when considering the examples in this section, to remember the discussion above about what it means to say that a "distribution" is an exponential family, and in particular to keep in mind that the set of parameters that are allowed to vary is critical in determining whether a "distribution" is or is not an exponential family.

The normal, exponential, log-normal, gamma, chi-squared, beta, Dirichlet, Bernoulli, categorical, Poisson, geometric, inverse Gaussian, von Mises and von Mises-Fisher distributions are all exponential families.

Some distributions are exponential families only if some of their parameters are held fixed. The family of Pareto distributions with a fixed minimum bound xm form an exponential family. The families of binomial and multinomial distributions with fixed number of trials n but unknown probability parameter(s) are exponential families. The family of negative binomial distributions with fixed number of failures (a.k.a. stopping-time parameter) r is an exponential family. However, when any of the above-mentioned fixed parameters are allowed to vary, the resulting family is not an exponential family.

As mentioned above, as a general rule, the support of an exponential family must remain the same across all parameter settings in the family. This is why the above cases (e.g. binomial with varying number of trials, Pareto with varying minimum bound) are not exponential families — in all of the cases, the parameter in question affects the support (particularly, changing the minimum or maximum possible value). For similar reasons, neither the discrete uniform distribution nor continuous uniform distribution are exponential families regardless of whether one of the bounds is held fixed. (If both bounds are held fixed, the result is a single distribution, not a family at all.)

The Weibull distribution with fixed shape parameter k is an exponential family. Unlike in the previous examples, the shape parameter does not affect the support; the fact that allowing it to vary makes the Weibull non-exponential is due rather to the particular form of the Weibull's probability density function (k appears in the exponent of an exponent).

In general, distributions that result from a finite or infinite mixture of other distributions, e.g. mixture model densities and compound probability distributions, are not exponential families. Examples are typical Gaussian mixture models as well as many heavy-tailed distributions that result from compounding (i.e. infinitely mixing) a distribution with a prior distribution over one of its parameters, e.g. the Student's t-distribution (compounding a normal distribution over a gamma-distributed precision prior), and the beta-binomial and Dirichlet-multinomial distributions. Other examples of distributions that are not exponential families are the F-distribution, Cauchy distribution, hypergeometric distribution and logistic distribution.

Following are some detailed examples of the representation of some useful distribution as exponential families.

Read more about this topic:  Exponential Family

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)