Science Payload
The Explorer 1 payload consisted of the Iowa Cosmic Ray Instrument without a tape data recorder which was not modified in time to make it onto the spacecraft. The real-time data received on the ground was therefore very sparse and puzzling showing normal counting rates and no counts at all. The later Explorer 3 mission, which included a tape data recorder in the payload, provided the additional data for confirmation of the earlier Explorer 1 data.
The scientific instrumentation of Explorer 1 was designed and built under the direction of Dr. James Van Allen of the University of Iowa containing:
- Anton 314 omnidirectional Geiger-Müller tube, designed by Dr. George Ludwig of Iowa's Cosmic Ray Laboratory, to detect cosmic rays. It could detect protons with E > 30 MeV and electrons with E > 3 MeV. Most of the time the instrument was saturated;
- Five temperature sensors (one internal, three external and one on the nose cone);
- Acoustic detector (crystal transducer and solid-state amplifier) to detect micrometeorite (cosmic dust) impacts. It responded to micrometeorite impacts on the spacecraft skin in such way that each impact would be a function of mass and velocity. Its effective area was 0.075 m2 and the average threshold sensitivity was 2.5 × 10−3 g cm/s;
- Wire grid detector, also to detect micrometeorite impacts. It consisted of 12 parallel connected cards mounted in a fiberglass supporting ring. Each card was wound with two layers of enameled nickel alloy wire with a diameter of 17 µm (21 µm with the enamel insulation included) in such way that a total area of 1 cm by 1 cm was completely covered. If a micrometeorite of about 10 µm impacted, it would fracture the wire, destroy the electrical connection, and thus record the event.
Read more about this topic: Explorer 1
Famous quotes containing the word science:
“After science comes sentiment.”
—Herman Melville (18191891)