Weil's Explicit Formula
There are several slightly different ways to state the explicit formula. Weil's form of the explicit formula states
where
- ρ runs over the non-trivial zeros of the zeta function
- p runs over positive primes
- m runs over positive integers
- F is a smooth function all of whose derivatives are rapidly decreasing
- φ is a Fourier transform of F:
- Φ(1/2 + it) = φ(t)
- Ψ(t) = −log(π) + Re(ψ(1/4 + it/2)), where ψ is the digamma function Γ′/Γ.
Roughly speaking, the explicit formula says the Fourier transform of the zeros of the zeta function is the set of prime powers plus some elementary factors.
The terms in the formula arise in the following way.
- The terms on the right hand side come from the logarithmic derivative of
-
- with the terms corresponding to the prime p coming from the Euler factor of p, and the term at the end involving Ψ coming from the gamma factor (the Euler factor at infinity).
- The left-hand side is a sum over all zeros of ζ * counted with multiplicities, so the poles at 0 and 1 are counted as zeros of order −1.
Read more about this topic: Explicit Formula
Famous quotes containing the words weil, explicit and/or formula:
“The payment of debts is necessary for social order. The non-payment is quite equally necessary for social order. For centuries humanity has oscillated, serenely unaware, between these two contradictory necessities.”
—Simone Weil (19091943)
“Like dreaming, reading performs the prodigious task of carrying us off to other worlds. But reading is not dreaming because books, unlike dreams, are subject to our will: they envelop us in alternative realities only because we give them explicit permission to do so. Books are the dreams we would most like to have, and, like dreams, they have the power to change consciousness, turning sadness to laughter and anxious introspection to the relaxed contemplation of some other time and place.”
—Victor Null, South African educator, psychologist. Lost in a Book: The Psychology of Reading for Pleasure, introduction, Yale University Press (1988)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
