The expected return (or expected gain) is the expected value of a random variable usually representing a gain, i.e. the weighted-average outcome in gambling, probability theory, economics or finance.
It is calculated by using the following formula:
- E(R) = Sum: probability (in scenario i) × the return (in scenario i) .
How do you calculate the average of a probability distribution? As denoted by the above formula, simply take the probability of each possible return outcome and multiply it by the return outcome itself. For example, if you knew a given investment had a 50% chance of earning a 10 return, a 25% chance of earning 20 and a 25% chance of earning -10, the expected return would be equal to 7.5:
- E(R) = 0.5 × 10 + 0.25 × 20 + 0.25 × (-10) = 7.5 .
Although this is what you expect the return to be, there is no guarantee that it will be the actual return.
Read more about Expected Return: Discrete Scenarios, Continuous Scenarios, Alternate Definition
Famous quotes containing the words expected and/or return:
“I know that I will always be expected to have extra insight into black textsespecially texts by black women. A working-class Jewish woman from Brooklyn could become an expert on Shakespeare or Baudelaire, my students seemed to believe, if she mastered the language, the texts, and the critical literature. But they would not grant that a middle-class white man could ever be a trusted authority on Toni Morrison.”
—Claire Oberon Garcia, African American scholar and educator. Chronicle of Higher Education, p. B2 (July 27, 1994)
“Sir Francis, Sir Francis, Sir Francis is come;”
—Unknown. Upon Sir Francis Drakes Return from His Voyage about the World, and the Queens Meeting Him (l. 1)