Overview
An exothermic reaction is a chemical or physical reaction that is done by the release of heat. It gives out energy to its surroundings. The energy needed for the reaction to occur is less than the total energy released.
When using a calorimeter, the change in heat of the calorimeter is equal to the opposite of the change in heat of the system. This means that when the medium in which the reaction is taking place gains heat, the reaction is exothermic.
The absolute amount of energy in a chemical system is extremely difficult to measure or calculate. The enthalpy change, ΔH, of a chemical reaction is much easier to measure and calculate. A bomb calorimeter is very suitable for measuring the energy change, ΔH, of a combustion reaction. Measured and calculated ΔH values are related to bond energies by:
- ΔH = energy used in bond breaking reactions − energy released in bond making products
by definition the enthalpy change has a negative value:
- ΔH < 0
in an exothermic reaction, gives a negative value for ΔH, since a larger value (the energy released in the reaction) is subtracted from a smaller value (the energy used for the reaction). For example, when hydrogen burns:
- 2H2 (g) + O2 (g) → 2H2O (g)
- ΔH = −483.6 kJ/mol of O2
Read more about this topic: Exothermic Reaction