A Center-biased Random Walk
Consider a random walk on the number line where, at each step, the position (call it x) may change by +1 (to the right) or -1 (to the left) with probabilities:
(where c is a constant greater than 0)
For example if the constant, c, equals 1, the probabilities of a move to the left at positions x = -2,-1,0,1,2 are given by respectively. The random walk has a centering effect that weakens as c increases.
Since the probabilities depend only on the current position (value of x) and not on any prior positions, this biased random walk satisfies the definition of a Markov chain.
Read more about this topic: Examples Of Markov Chains
Famous quotes containing the words random and/or walk:
“poor Felix Randal;
How far from then forethought of, all thy more boisterous years,
When thou at the random grim forge, powerful amidst peers,
Didst fettle for the great gray drayhorse his bright and battering
sandal!”
—Gerard Manley Hopkins (18441889)
“No place of grace for those who avoid the face
No time to rejoice for those who walk among noise and deny the voice”
—T.S. (Thomas Stearns)