Free Group On Two Generators
The free group with two generators a and b consists of all finite strings that can be formed from the four symbols a, a-1, b and b-1 such that no a appears directly next to an a-1 and no b appears directly next to a b-1. Two such strings can be concatenated and converted into a string of this type by repeatedly replacing the "forbidden" substrings with the empty string. For instance: "abab-1a-1" concatenated with "abab-1a" yields "abab-1a-1abab-1a", which gets reduced to "abaab-1a". One can check that the set of those strings with this operation forms a group with neutral element the empty string ε := "". (Usually the quotation marks are left off, which is why you need the symbol ε!)
This is another infinite non-abelian group.
Free groups are important in algebraic topology; the free group in two generators is also used for a proof of the Banach–Tarski paradox.
Read more about this topic: Examples Of Groups
Famous quotes containing the words free and/or group:
“Other roads do some violence to Nature, and bring the traveler to stare at her, but the river steals into the scenery it traverses without intrusion, silently creating and adorning it, and is as free to come and go as the zephyr.”
—Henry David Thoreau (18171862)
“Just as a person who is always asserting that he is too good-natured is the very one from whom to expect, on some occasion, the coldest and most unconcerned cruelty, so when any group sees itself as the bearer of civilization this very belief will betray it into behaving barbarously at the first opportunity.”
—Simone Weil (19101943)