Examples of Groups - Free Group On Two Generators

Free Group On Two Generators

The free group with two generators a and b consists of all finite strings that can be formed from the four symbols a, a-1, b and b-1 such that no a appears directly next to an a-1 and no b appears directly next to a b-1. Two such strings can be concatenated and converted into a string of this type by repeatedly replacing the "forbidden" substrings with the empty string. For instance: "abab-1a-1" concatenated with "abab-1a" yields "abab-1a-1abab-1a", which gets reduced to "abaab-1a". One can check that the set of those strings with this operation forms a group with neutral element the empty string ε := "". (Usually the quotation marks are left off, which is why you need the symbol ε!)

This is another infinite non-abelian group.

Free groups are important in algebraic topology; the free group in two generators is also used for a proof of the Banach–Tarski paradox.

Read more about this topic:  Examples Of Groups

Famous quotes containing the words free and/or group:

    Who are we? And for what are we going to fight? Are we the titled slaves of George the Third? The military conscripts of Napoleon the Great? Or the frozen peasants of the Russian Czar? No—we are the free born sons of America; the citizens of the only republic now existing in the world; and the only people on earth who possess rights, liberties, and property which they dare call their own.
    Andrew Jackson (1767–1845)

    With a group of bankers I always had the feeling that success was measured by the extent one gave nothing away.
    Francis Aungier, Pakenham, 7th Earl Longford (b. 1905)