Examples of Groups - Free Group On Two Generators

Free Group On Two Generators

The free group with two generators a and b consists of all finite strings that can be formed from the four symbols a, a-1, b and b-1 such that no a appears directly next to an a-1 and no b appears directly next to a b-1. Two such strings can be concatenated and converted into a string of this type by repeatedly replacing the "forbidden" substrings with the empty string. For instance: "abab-1a-1" concatenated with "abab-1a" yields "abab-1a-1abab-1a", which gets reduced to "abaab-1a". One can check that the set of those strings with this operation forms a group with neutral element the empty string ε := "". (Usually the quotation marks are left off, which is why you need the symbol ε!)

This is another infinite non-abelian group.

Free groups are important in algebraic topology; the free group in two generators is also used for a proof of the Banach–Tarski paradox.

Read more about this topic:  Examples Of Groups

Famous quotes containing the words free and/or group:

    We placed the wreaths upon the splended granite sarcophagus, and at its feet, and felt that only the earthly robe we loved so much was there. The pure, tender, loving spirit which loved us so tenderly, is above us—loving us, praying for us, and free from all suffering and woe—yes, that is a comfort, and that first birthday in another world must have been a far brighter one than any in this poor world below!
    Victoria (1819–1901)

    Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patrick’s Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldn’t some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?
    Anna Quindlen (b. 1953)