Special Cases
To make sense of the definition, it is helpful to consider what it means in relatively simple cases where the sequence is finite and begins or ends with 0.
- The sequence 0 → A → B is exact at A if and only if the map from A to B has kernel {0}, i.e. if and only if that map is a monomorphism (one-to-one).
- Dually, the sequence B → C → 0 is exact at C if and only if the image of the map from B to C is all of C, i.e. if and only if that map is an epimorphism (onto).
- A consequence of these last two facts is that the sequence 0 → X → Y → 0 is exact if and only if the map from X to Y is an isomorphism.
Important are short exact sequences, which are exact sequences of the form
By the above, we know that for any such short exact sequence, f is a monomorphism and g is an epimorphism. Furthermore, the image of f is equal to the kernel of g. It is helpful to think of A as a subobject of B with f being the embedding of A into B, and of C as the corresponding factor object B/A, with the map g being the natural projection from B to B/A (whose kernel is exactly A).
Read more about this topic: Exact Sequence
Famous quotes containing the words special and/or cases:
“Hes leaving Germany by special request of the Nazi government. First he sends a dispatch about Danzig and how 10,000 German tourists are pouring into the city every day with butterfly nets in their hands and submachine guns in their knapsacks. They warn him right then. What does he do next? Goes to a reception at von Ribbentropfs and keeps yelling for gefilte fish!”
—Billy Wilder (b. 1906)
“There are few cases in which mere popularity should be considered a proper test of merit; but the case of song-writing is, I think, one of the few.”
—Edgar Allan Poe (18091845)