Exact Differential - Some Useful Equations Derived From Exact Differentials in Two Dimensions

Some Useful Equations Derived From Exact Differentials in Two Dimensions

(See also Bridgman's thermodynamic equations for the use of exact differentials in the theory of thermodynamic equations)

Suppose we have five state functions, and . Suppose that the state space is two dimensional and any of the five quantities are exact differentials. Then by the chain rule

(1)~~~~~ dz = \left(\frac{\partial z}{\partial x}\right)_y dx+ \left(\frac{\partial z}{\partial y}\right)_x dy = \left(\frac{\partial z}{\partial u}\right)_v du +\left(\frac{\partial z}{\partial v}\right)_u dv

but also by the chain rule:

(2)~~~~~ dx = \left(\frac{\partial x}{\partial u}\right)_v du +\left(\frac{\partial x}{\partial v}\right)_u dv

and

(3)~~~~~ dy= \left(\frac{\partial y}{\partial u}\right)_v du +\left(\frac{\partial y}{\partial v}\right)_u dv

so that:

(4)~~~~~ dz = \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v \right]du

+ \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial v}\right)_u + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial v}\right)_u \right]dv

which implies that:

(5)~~~~~ \left(\frac{\partial z}{\partial u}\right)_v = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v

Letting gives:

(6)~~~~~ \left(\frac{\partial z}{\partial u}\right)_y = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_y

Letting gives:

(7)~~~~~ \left(\frac{\partial z}{\partial y}\right)_v = \left(\frac{\partial z}{\partial y}\right)_x + \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_v

Letting, gives:

(8)~~~~~ \left(\frac{\partial z}{\partial y}\right)_x = - \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z

using (\partial a/\partial b)_c = 1/(\partial
b/\partial a)_c gives the triple product rule:

(9)~~~~~ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x =-1

Read more about this topic:  Exact Differential

Famous quotes containing the words derived, exact and/or dimensions:

    There is, it seems to us,
    At best, only a limited value
    In the knowledge derived from experience....
    —T.S. (Thomas Stearns)

    He who asks fortune-tellers the future unwittingly forfeits an inner intimation of coming events that is a thousand times more exact than anything they may say. He is impelled by inertia, rather than curiosity, and nothing is more unlike the submissive apathy with which he hears his fate revealed than the alert dexterity with which the man of courage lays hands on the future.
    Walter Benjamin (1892–1940)

    It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?—or animals?—even forests or oceans or rocks?—in this world of ours or, even, in worlds or dimensions elsewhere.
    Doris Lessing (b. 1919)