Evolutionary Algorithms
Evolutionary algorithms form a subset of evolutionary computation in that they generally only involve techniques implementing mechanisms inspired by biological evolution such as reproduction, mutation, recombination, natural selection and survival of the fittest. Candidate solutions to the optimization problem play the role of individuals in a population, and the cost function determines the environment within which the solutions "live" (see also fitness function). Evolution of the population then takes place after the repeated application of the above operators.
In this process, there are two main forces that form the basis of evolutionary systems: Recombination and mutation create the necessary diversity and thereby facilitate novelty, while selection acts as a force increasing quality.
Many aspects of such an evolutionary process are stochastic. Changed pieces of information due to recombination and mutation are randomly chosen. On the other hand, selection operators can be either deterministic, or stochastic. In the latter case, individuals with a higher fitness have a higher chance to be selected than individuals with a lower fitness, but typically even the weak individuals have a chance to become a parent or to survive.
Read more about this topic: Evolutionary Computation
Famous quotes containing the word evolutionary:
“The point is, ladies and gentlemen, that greed, for lack of a better word, is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.”
—Stanley Weiser, U.S. screenwriter, and Oliver Stone. Gordon Gekko (Michael Douglas)