Beyond General Relativity
The description of event horizons given by general relativity is thought to be incomplete. When the conditions under which event horizons occur are modeled using a more comprehensive picture of the way the universe works, that includes both relativity and quantum mechanics, event horizons are expected to have properties that are different from those predicted using general relativity alone.
At present, it is expected that the primary impact of quantum effects is for event horizons to possess a temperature and so emit radiation. For black holes, this manifests as Hawking radiation, and the larger question of how the black hole possesses a temperature is part of the topic of black hole thermodynamics. For accelerating particles, this manifests as the Unruh effect, which causes space around the particle to appear to be filled with matter and radiation.
A complete description of event horizons is expected to, at minimum, require a theory of quantum gravity. One such candidate theory is M-theory. Another such candidate theory is Loop Quantum Gravity.
Read more about this topic: Event Horizon
Famous quotes containing the words general and/or relativity:
“The following general definition of an animal: a system of different organic molecules that have combined with one another, under the impulsion of a sensation similar to an obtuse and muffled sense of touch given to them by the creator of matter as a whole, until each one of them has found the most suitable position for its shape and comfort.”
—Denis Diderot (17131784)
“By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bĂȘte noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!”
—Albert Einstein (18791955)