Performance
Understanding evaporative cooling performance requires an understanding of psychrometrics. Evaporative cooling performance is variable due to changes in external temperature and humidity level. A residential cooler should be able to cool air to within 3–4 °C (5–7 °F) of the corresponding wet-bulb temperature.
It is simple to predict cooler performance from standard weather report information. Because weather reports usually contain the dewpoint and relative humidity, but not the wet-bulb temperature, a psychrometric chart or a simple computer program must be used to compute the wet bulb temperature. Once the wet bulb temperature and the dry bulb temperature are identified, the cooling performance or leaving air temperature of the cooler may be determined:
- TLA = TDB – ((TDB – TWB) x E)
- TLA = Leaving Air Temp
- TDB = Dry Bulb Temp
- TWB = Wet Bulb Temp
- E = Efficiency of the evaporative media.
Evaporative media efficiency usually runs between 80% to 90%, and the evaporation efficiency drops very little over time. Typical aspen pads used in residential evaporative coolers offer around 85% efficiency while CELdek type of evaporative media offer efficiencies of >90% depending on air velocity. The CELdek media is more often used in large commercial and industrial installations.
As an example, in Las Vegas, Nevada, with a typical summer design day of 108°F DB/66°F WB or about 8% relative humidity, the leaving air temperature of a residential cooler would be:
- TLA = 108° – ((108° – 66°) x 85% efficiency)
- TLA = 72.3°F
However, either of two methods can be used to estimate performance:
- Use a psychrometric chart to calculate wet bulb temperature, and then add 6–8 °F as described above.
- Use a rule of thumb which estimates that the wet bulb temperature is approximately equal to the ambient temperature, minus one third of the difference between the ambient temperature and the dew point. As before, add 6–8 °F as described above.
Some examples clarify this relationship:
- At 32 °C (90 °F) and 15% relative humidity, air may be cooled to nearly 16 °C (61 °F). The dew point for these conditions is 2 °C (36 °F).
- At 32 °C (90 °F) and 50% relative humidity, air may be cooled to about 24 °C (75 °F). The dew point for these conditions is 20 °C (68 °F).
- At 40 °C (104 °F) and 15% relative humidity, air may be cooled to nearly 21 °C (70 °F). The dew point for these conditions is 8 °C (46 °F).
(Cooling examples extracted from the June 25, 2000 University of Idaho publication, "Homewise").
Because evaporative coolers perform best in dry conditions, they are widely used and most effective in arid, desert regions such as the southwestern USA and northern Mexico.
The same equation indicates why evaporative coolers are of limited use in highly humid environments: for example, a hot August day in Tokyo may be 30 °C (86 °F), 85% relative humidity, 1,005 hPa pressure. This gives dew point 27.2 °C (81.0 °F) and wet-bulb temperature 27.88 °C (82.18 °F). According to the formula above, at 85% efficiency air may be cooled only down to 28.2 °C (82.8 °F) which makes it quite impractical.
Read more about this topic: Evaporative Cooler
Famous quotes containing the word performance:
“What avails it that you are a Christian, if you are not purer than the heathen, if you deny yourself no more, if you are not more religious? I know of many systems of religion esteemed heathenish whose precepts fill the reader with shame, and provoke him to new endeavors, though it be to the performance of rites merely.”
—Henry David Thoreau (18171862)
“To vote is like the payment of a debta duty never to be neglected, if its performance is possible.”
—Rutherford Birchard Hayes (18221893)
“True balance requires assigning realistic performance expectations to each of our roles. True balance requires us to acknowledge that our performance in some areas is more important than in others. True balance demands that we determine what accomplishments give us honest satisfaction as well as what failures cause us intolerable grief.”
—Melinda M. Marshall (20th century)