Potential For Extraterrestrial Life
Europa has emerged as one of the top Solar System locations in terms of potential habitability and possibly, hosting extraterrestrial life. Life could exist in its under-ice ocean, perhaps subsisting in an environment similar to Earth's deep-ocean hydrothermal vents or the Antarctic Lake Vostok. Life in such an ocean could possibly be similar to microbial life on Earth in the deep ocean. So far, there is no evidence that life exists on Europa, but the likely presence of liquid water has spurred calls to send a probe there.
Until the 1970s, life, at least as the concept is generally understood, was believed to be entirely dependent on energy from the Sun. Plants on Earth's surface capture energy from sunlight to photosynthesize sugars from carbon dioxide and water, releasing oxygen in the process, and are then eaten by oxygen-respiring animals, passing their energy up the food chain. Even life in the deep ocean, far below the reach of sunlight, was believed to obtain its nourishment either from the organic detritus raining down from the surface, or by eating animals that in turn depend on that stream of nutrients. An environment's ability to support life was thus thought to depend on its access to sunlight.
However, in 1977, during an exploratory dive to the Galapagos Rift in the deep-sea exploration submersible Alvin, scientists discovered colonies of giant tube worms, clams, crustaceans, mussels, and other assorted creatures clustered around undersea volcanic features known as black smokers. These creatures thrive despite having no access to sunlight, and it was soon discovered that they comprise an entirely independent food chain. Instead of plants, the basis for this food chain was a form of bacterium that derived its energy from oxidization of reactive chemicals, such as hydrogen or hydrogen sulfide, that bubbled up from the Earth's interior. This chemosynthesis revolutionized the study of biology by revealing that life need not be sun-dependent; it only requires water and an energy gradient in order to exist. It opened up a new avenue in astrobiology by massively expanding the number of possible extraterrestrial habitats.
While the tube worms and other multicellular eukaryotic organisms around these hydrothermal vents respire oxygen and thus are indirectly dependent on photosynthesis, anaerobic chemosynthetic bacteria and archaea that inhabit these ecosystems provide a possible model for life in Europa's ocean. The energy provided by tidal flexing drives active geological processes within Europa's interior, just as they do to a far more obvious degree on its sister moon Io. While Europa, like the Earth, may possess an internal energy source from radioactive decay, the energy generated by tidal flexing would be several orders of magnitude greater than any radiological source. However, such an energy source could never support an ecosystem as large and diverse as the photosynthesis-based ecosystem on Earth's surface. Life on Europa could exist clustered around hydrothermal vents on the ocean floor, or below the ocean floor, where endoliths are known to inhabit on Earth. Alternatively, it could exist clinging to the lower surface of the moon's ice layer, much like algae and bacteria in Earth's polar regions, or float freely in Europa's ocean. However, if Europa's ocean were too cold, biological processes similar to those known on Earth could not take place. Similarly, if it were too salty, only extreme halophiles could survive in its environment. In September 2009, planetary scientist Richard Greenberg calculated that cosmic rays impacting on Europa's surface convert some water ice into free oxygen (O2) which could then be absorbed into the ocean below as water wells up to fill cracks. Via this process, Greenberg estimates that Europa's ocean could eventually achieve an oxygen concentration greater than that of Earth's oceans within just a few million years. This would enable Europa to support not merely anaerobic microbial life but potentially larger, aerobic organisms such as fish.
In 2006, Robert T. Pappalardo, an assistant professor in the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder said,
We’ve spent quite a bit of time and effort trying to understand if Mars was once a habitable environment. Europa today, probably, is a habitable environment. We need to confirm this … but Europa, potentially, has all the ingredients for life … and not just four billion years ago … but today.In November 2011, a team of researchers presented evidence in the journal Nature suggesting the existence of vast lakes of liquid water entirely encased in the moon's icy outer shell and distinct from a liquid ocean thought to exist farther down beneath the ice shell. If confirmed, the lakes could be yet another potential habitat for life.
Read more about this topic: Europa (moon)
Famous quotes containing the words potential for, potential and/or life:
“While each child is born with his or her own distinct genetic potential for physical, social, emotional and cognitive development, the possibilities for reaching that potential remain tied to early life experiences and the parent-child relationship within the family.”
—Bernice Weissbourd (20th century)
“Silence is as full of potential wisdom and wit as the unhewn marble of great sculpture. The silent bear no witness against themselves.”
—Aldous Huxley (18941963)
“The American grips himself, at the very sources of his consciousness, in a grip of care: and then, to so much of the rest of life, is indifferent. Whereas, the European hasnt got so much care in him, so he cares much more for life and living.”
—D.H. (David Herbert)