Euler's Totient Function - Ratio of Consecutive Values

Ratio of Consecutive Values

In 1950 Somayajulu proved


\lim\inf \frac{\varphi(n+1)}{\varphi(n)}= 0 and 
\lim\sup \frac{\varphi(n+1)}{\varphi(n)}= \infty.

In 1954 Schinzel and SierpiƄski strengthened this, proving that the set


\left\{\frac{\varphi(n+1)}{\varphi(n)},\;\;n = 1,2,\cdots\right\}

is dense in the positive real numbers. They also proved that the set


\left\{\frac{\varphi(n)}{n},\;\;n = 1,2,\cdots\right\}

is dense in the interval (0, 1).

Read more about this topic:  Euler's Totient Function

Famous quotes containing the words ratio of, ratio and/or values:

    Personal rights, universally the same, demand a government framed on the ratio of the census: property demands a government framed on the ratio of owners and of owning.
    Ralph Waldo Emerson (1803–1882)

    Personal rights, universally the same, demand a government framed on the ratio of the census: property demands a government framed on the ratio of owners and of owning.
    Ralph Waldo Emerson (1803–1882)

    Nothing is so threatening to conventional values as a man who does not want to work or does not want to work at a challenging job, and most people are disturbed if a man in a well- paying job indicates ambivalence or dislike toward it.
    Alice S. Rossi (b. 1922)