Growth of The Function
In the words of Hardy & Wright, φ(n) is "always ‘nearly n’."
First
but as n goes to infinity, for all δ > 0
These two formulae can be proved by using little more than the formulae for φ(n) and the divisor sum function σ(n).
In fact, during the proof of the second formula, the inequality
true for n > 1, is proven.
We also have
Here γ is Euler's constant, γ = 0.577215665..., eγ = 1.7810724..., e−γ = 0.56145948... .
Proving this, however, requires the prime number theorem. Since log log (n) goes to infinity, this formula shows that
In fact, more is true.
for n > 2, and
for infinitely many n.
Concerning the second inequality, Ribenboim says "The method of proof is interesting, in that the inequality is shown first under the assumption that the Riemann hypothesis is true, secondly under the contrary assumption."
For the average order we have
The "Big O" stands for a quantity that is bounded by a constant times nlog n (which is small compared to n2).
This result can be used to prove that the probability of two randomly-chosen numbers being relatively prime is
Read more about this topic: Euler's Totient Function
Famous quotes containing the words growth of the, growth of, growth and/or function:
“I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.”
—Thomas Henry Huxley (182595)
“The windy springs and the blazing summers, one after another, had enriched and mellowed that flat tableland; all the human effort that had gone into it was coming back in long, sweeping lines of fertility. The changes seemed beautiful and harmonious to me; it was like watching the growth of a great man or of a great idea. I recognized every tree and sandbank and rugged draw. I found that I remembered the conformation of the land as one remembers the modelling of human faces.”
—Willa Cather (18731947)
“Interpretation is the evidence of growth and knowledge, the latter through sorrow that great teacher.”
—Eleonora Duse (18581924)
“Philosophical questions are not by their nature insoluble. They are, indeed, radically different from scientific questions, because they concern the implications and other interrelations of ideas, not the order of physical events; their answers are interpretations instead of factual reports, and their function is to increase not our knowledge of nature, but our understanding of what we know.”
—Susanne K. Langer (18951985)