The Equations in One Spatial Dimension
For certain problems, especially when used to analyze compressible flow in a duct or in case the flow is cylindrically or spherically symmetric, the one-dimensional Euler equations are a useful first approximation. Generally, the Euler equations are solved by Riemann's method of characteristics. This involves finding curves in plane of independent variables (i.e., x and t) along which partial differential equations (PDE's) degenerate into ordinary differential equations (ODE's). Numerical solutions of the Euler equations rely heavily on the method of characteristics.
Read more about this topic: Euler Equations (fluid Dynamics)
Famous quotes containing the word dimension:
“God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.”
—Marcus Minucius Felix (2nd or 3rd cen. A.D.)