Euler Equations (fluid Dynamics) - Shock Waves

Shock Waves

The Euler equations are nonlinear hyperbolic equations and their general solutions are waves. Much like the familiar oceanic waves, waves described by the Euler Equations 'break' and so-called shock waves are formed; this is a nonlinear effect and represents the solution becoming multi-valued. Physically this represents a breakdown of the assumptions that led to the formulation of the differential equations, and to extract further information from the equations we must go back to the more fundamental integral form. Then, weak solutions are formulated by working in 'jumps' (discontinuities) into the flow quantities – density, velocity, pressure, entropy – using the Rankine–Hugoniot shock conditions. Physical quantities are rarely discontinuous; in real flows, these discontinuities are smoothed out by viscosity. (See Navier–Stokes equations)

Shock propagation is studied – among many other fields – in aerodynamics and rocket propulsion, where sufficiently fast flows occur.

Read more about this topic:  Euler Equations (fluid Dynamics)

Famous quotes containing the words shock and/or waves:

    Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.
    Jane Rule (b. 1931)

    the whole sea become an entanglement of watery bodies
    lost to the world bearing what they cannot hold. Broken,

    beaten, desolate, reaching from the dead to be taken up
    they cry out, failing, failing! their cries rising
    in waves still as the skillful yachts pass over.
    William Carlos Williams (1883–1963)