Euler Characteristic - Topological Definition

Topological Definition

The polyhedral surfaces discussed above are, in modern language, two-dimensional finite CW-complexes. (When only triangular faces are used, they are two-dimensional finite simplicial complexes.) In general, for any finite CW-complex, the Euler characteristic can be defined as the alternating sum

where kn denotes the number of cells of dimension n in the complex.

Similarly, for a simplicial complex, the Euler characteristic equals the alternating sum

where kn denotes the number of n-simplexes in the complex.

More generally still, for any topological space, we can define the nth Betti number bn as the rank of the n-th singular homology group. The Euler characteristic can then be defined as the alternating sum

This quantity is well-defined if the Betti numbers are all finite and if they are zero beyond a certain index n0. For simplicial complexes, this is not the same definition as in the previous paragraph but a homology computation shows that the two definitions will give the same value for .

Read more about this topic:  Euler Characteristic

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)