Topological Definition
The polyhedral surfaces discussed above are, in modern language, two-dimensional finite CW-complexes. (When only triangular faces are used, they are two-dimensional finite simplicial complexes.) In general, for any finite CW-complex, the Euler characteristic can be defined as the alternating sum
where kn denotes the number of cells of dimension n in the complex.
Similarly, for a simplicial complex, the Euler characteristic equals the alternating sum
where kn denotes the number of n-simplexes in the complex.
More generally still, for any topological space, we can define the nth Betti number bn as the rank of the n-th singular homology group. The Euler characteristic can then be defined as the alternating sum
This quantity is well-defined if the Betti numbers are all finite and if they are zero beyond a certain index n0. For simplicial complexes, this is not the same definition as in the previous paragraph but a homology computation shows that the two definitions will give the same value for .
Read more about this topic: Euler Characteristic
Famous quotes containing the word definition:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)