Real Coordinate Space
Let R denote the field of real numbers. For any positive integer n, the set of all n-tuples of real numbers forms an n-dimensional vector space over R, which is denoted Rn and sometimes called real coordinate space. An element of Rn is written
where each xi is a real number. The vector space operations on Rn are defined by
The vector space Rn comes with a standard basis:
An arbitrary vector in Rn can then be written in the form
Rn is the prototypical example of a real n-dimensional vector space. In fact, every real n-dimensional vector space V is isomorphic to Rn. This isomorphism is not canonical, however. A choice of isomorphism is equivalent to a choice of basis for V (by looking at the image of the standard basis for Rn in V). The reason for working with arbitrary vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner (that is, without choosing a preferred basis).
Read more about this topic: Euclidean Space
Famous quotes containing the words real and/or space:
“Im not making light of prayers here, but of so-called school prayer, which bears as much resemblance to real spiritual experience as that freeze-dried astronaut food bears to a nice standing rib roast. From what I remember of praying in school, it was almost an insult to God, a rote exercise in moving your mouth while daydreaming or checking out the cutest boy in the seventh grade that was a far, far cry from soul-searching.”
—Anna Quindlen (b. 1952)
“The merit of those who fill a space in the worlds history, who are borne forward, as it were, by the weight of thousands whom they lead, shed a perfume less sweet than do the sacrifices of private virtue.”
—Ralph Waldo Emerson (18031882)