Real Coordinate Space
Let R denote the field of real numbers. For any positive integer n, the set of all n-tuples of real numbers forms an n-dimensional vector space over R, which is denoted Rn and sometimes called real coordinate space. An element of Rn is written
where each xi is a real number. The vector space operations on Rn are defined by
The vector space Rn comes with a standard basis:
An arbitrary vector in Rn can then be written in the form
Rn is the prototypical example of a real n-dimensional vector space. In fact, every real n-dimensional vector space V is isomorphic to Rn. This isomorphism is not canonical, however. A choice of isomorphism is equivalent to a choice of basis for V (by looking at the image of the standard basis for Rn in V). The reason for working with arbitrary vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner (that is, without choosing a preferred basis).
Read more about this topic: Euclidean Space
Famous quotes containing the words real and/or space:
“But real action is in silent moments. The epochs of our life are not in the visible facts of our choice of a calling, our marriage, our acquisition of an office, and the like, but in a silent thought by the way-side as we walk; in a thought which revises our entire manner of life, and says,Thus hast thou done, but it were better thus.”
—Ralph Waldo Emerson (18031882)
“True spoiling is nothing to do with what a child owns or with amount of attention he gets. he can have the major part of your income, living space and attention and not be spoiled, or he can have very little and be spoiled. It is not what he gets that is at issue. It is how and why he gets it. Spoiling is to do with the family balance of power.”
—Penelope Leach (20th century)