As A Description of The Structure of Space
Euclid believed that his axioms were self-evident statements about physical reality. Euclid's proofs depend upon assumptions perhaps not obvious in Euclid's fundamental axioms, in particular that certain movements of figures do not change their geometrical properties such as the lengths of sides and interior angles, the so-called Euclidean motions, which include translations and rotations of figures. Taken as a physical description of space, postulate 2 (extending a line) asserts that space does not have holes or boundaries (in other words, space is homogeneous and unbounded); postulate 4 (equality of right angles) says that space is isotropic and figures may be moved to any location while maintaining congruence; and postulate 5 (the parallel postulate) that space is flat (has no intrinsic curvature).
As discussed in more detail below, Einstein's theory of relativity significantly modifies this view.
The ambiguous character of the axioms as originally formulated by Euclid makes it possible for different commentators to disagree about some of their other implications for the structure of space, such as whether or not it is infinite (see below) and what its topology is. Modern, more rigorous reformulations of the system typically aim for a cleaner separation of these issues. Interpreting Euclid's axioms in the spirit of this more modern approach, axioms 1-4 are consistent with either infinite or finite space (as in elliptic geometry), and all five axioms are consistent with a variety of topologies (e.g., a plane, a cylinder, or a torus for two-dimensional Euclidean geometry).
Read more about this topic: Euclidean Geometry
Famous quotes containing the words description, structure and/or space:
“An intentional object is given by a word or a phrase which gives a description under which.”
—Gertrude Elizabeth Margaret Anscombe (b. 1919)
“It is difficult even to choose the adjective
For this blank cold, this sadness without cause.
The great structure has become a minor house.
No turban walks across the lessened floors.
The greenhouse never so badly needed paint.”
—Wallace Stevens (18791955)
“With sturdy shoulders, space stands opposing all its weight to nothingness. Where space is, there is being.”
—Friedrich Nietzsche (18441900)