Norm-Euclidean Fields
Algebraic number fields K come with a canonical norm function on them: the absolute value of the field norm N that takes an algebraic element α to the product of all the conjugates of α. This norm maps the ring of integers of a number field K, say OK, to the nonnegative rational integers, so it is a candidate to be a Euclidean norm on this ring. If this norm satisfies the axioms of a Euclidean function then the number field K is called norm-Euclidean. Strictly speaking it is the ring of integers that is Euclidean since fields are trivially Euclidean domains, but the terminology is standard.
If a field is not norm-Euclidean then that does not mean the ring of integers is not Euclidean, just that the field norm does not satisfy the axioms of a Euclidean function. Indeed, there are examples of number fields whose ring of integers is Euclidean but not norm-Euclidean, a simple example being the quadratic field . However, for imaginary quadratic fields it is indeed the case that the Eucidean fields are norm-Euclidean. Finding all such fields is a major open problem, particularly in the quadratic case.
The norm-Euclidean quadratic fields have been fully classified, they are where d takes the values
- −11, −7, −3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 (sequence A048981 in OEIS).
Read more about this topic: Euclidean Domain
Famous quotes containing the word fields:
“... my one aim and concentrated purpose shall be and is to show that women can learn, can reason, can compete with men in the grand fields of literature and science ... that a woman can be a woman and a true one without having all her time engrossed by dress and society.”
—M. Carey Thomas (18571935)