The Euclidean distance between points p and q is the length of the line segment connecting them .
In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:
-
(1)
The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are Euclidean vectors, starting from the origin of the space, and their tips indicate two points. The Euclidean norm, or Euclidean length, or magnitude of a vector measures the length of the vector:
where the last equation involves the dot product.
A vector can be described as a directed line segment from the origin of the Euclidean space (vector tail), to a point in that space (vector tip). If we consider that its length is actually the distance from its tail to its tip, it becomes clear that the Euclidean norm of a vector is just a special case of Euclidean distance: the Euclidean distance between its tail and its tip.
The distance between points p and q may have a direction (e.g. from p to q), so it may be represented by another vector, given by
In a three-dimensional space (n=3), this is an arrow from p to q, which can be also regarded as the position of q relative to p. It may be also called a displacement vector if p and q represent two positions of the same point at two successive instants of time.
The Euclidean distance between p and q is just the Euclidean length of this distance (or displacement) vector:
-
(2)
which is equivalent to equation 1, and also to:
Famous quotes containing the word distance:
“The Russians imitate French ways, but always at a distance of fifty years.”
—Stendhal [Marie Henri Beyle] (17831842)