The Euclidean distance between points p and q is the length of the line segment connecting them .
In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:
-
(1)
The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are Euclidean vectors, starting from the origin of the space, and their tips indicate two points. The Euclidean norm, or Euclidean length, or magnitude of a vector measures the length of the vector:
where the last equation involves the dot product.
A vector can be described as a directed line segment from the origin of the Euclidean space (vector tail), to a point in that space (vector tip). If we consider that its length is actually the distance from its tail to its tip, it becomes clear that the Euclidean norm of a vector is just a special case of Euclidean distance: the Euclidean distance between its tail and its tip.
The distance between points p and q may have a direction (e.g. from p to q), so it may be represented by another vector, given by
In a three-dimensional space (n=3), this is an arrow from p to q, which can be also regarded as the position of q relative to p. It may be also called a displacement vector if p and q represent two positions of the same point at two successive instants of time.
The Euclidean distance between p and q is just the Euclidean length of this distance (or displacement) vector:
-
(2)
which is equivalent to equation 1, and also to:
Famous quotes containing the word distance:
“Her personality had an architectonic quality; I think of her when I see some of the great London railway termini, especially St. Pancras, with its soot and turrets, and she overshadowed her own daughters, whom she did not understandmy mother, who liked things to be nice; my dotty aunt. But my mother had not the strength to put even some physical distance between them, let alone keep the old monster at emotional arms length.”
—Angela Carter (19401992)