Calculating An Escape Velocity
To expand upon the derivation given in the Overview,
where is the barycentric escape velocity, G is the gravitational constant, M is the mass of the body being escaped from, r is the distance between the center of the body and the point at which escape velocity is being calculated, g is the gravitational acceleration at that distance, and μ is the standard gravitational parameter.
The escape velocity at a given height is times the speed in a circular orbit at the same height, (compare this with equation (14) in circular motion). This corresponds to the fact that the potential energy with respect to infinity of an object in such an orbit is minus two times its kinetic energy, while to escape the sum of potential and kinetic energy needs to be at least zero. The velocity corresponding to the circular orbit is sometimes called the first cosmic velocity, whereas in this context the escape velocity is referred to as the second cosmic velocity"
For a body with a spherically-symmetric distribution of mass, the barycentric escape velocity from the surface (in m/s) is approximately 2.364×10−5 m1.5kg−0.5s−1 times the radius r (in meters) times the square root of the average density ρ (in kg/m³), or:
Read more about this topic: Escape Velocity
Famous quotes containing the words calculating and/or escape:
“What our children have to fear is not the cars on the highways of tomorrow but our own pleasure in calculating the most elegant parameters of their deaths.”
—J.G. (James Graham)
“No evil dooms us hopelessly except the evil we love, and desire to continue in, and make no effort to escape from.”
—George Eliot [Mary Ann (or Marian)